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Model of biological evolution with threshold dynamics and infinitely many absorbing states
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We study a model of biological evolution where the survival of a given species depends on its interactions
with neighboring species. In the steady state the model has an active phase and an absorbing phase, which are
separated by the critical point of the directed percolation universality class. The absorbing phase is infinitely
degenerate and the dynamical behavior of our model is found to be nonuniy&ka63-651X99)12908-9

PACS numbds): 05.90+m, 87.23—n

Biological systems, which consist of many interacting en-affect, at least some, species that already existed in that
tities like cells, individuals, or species, are certainly within niche. Our model is not driven by the external dynamics:
the scope of statistical mechanics. One of the modern topicactive species are those with fitnesses below certain thresh-
in this field is the modeling of biological evolution. To a old parameter, which might be regarded as some kind of
large extent this interest is inspired by the so-called Bakecological pressure. It turns out that depending on the value
Snepper(BS) model, which relates the apparent scale invari-of r the model is either in the active phase with constant
ance of the extinction of species with the widely applicableextinction and replacement of species taking place or in the
concept of the self-organized criticalifit]. The BS model  absorbing phase where the evolutional struggle comes to rest
provides a coarse-grained description of an ecosystem. land species no longer extinct. Although our model cannot
this lattice model each species described by its fitness, describe a long-time aspect of evolution in real ecosystems,
which is a real number (€f;<<1). In each time step the we hope that it might describe them at least in a restricted
species with the smalle$t becomes extinct and is replaced sense. The model shows that a small change of external pa-
by a new species with the fithess chosen randomly. Morerameters(r) might induce a transition in an ecosystem be-
over, as inspired by biological observation, the nearest spaween the stasis and the active phase.
cies are also affected and their fithess is also chosen anew Our model has also an interesting critical behavior. Monte
randomly. A remarkable prediction of the BS model is thatCarlo simulations for this model show that as far as the
without tuning any parameters the model spontaneouslgteady-state properties are concerned, the model undergoes a
evolves toward the critical state, where arbitrary-size avaphase transition of the DP universality class. However, cer-
lanches of extinctions are observed, which is in agreemertain exponents, namely; and § (defined below describing
with some fossil recordg2]. The BS model inspired an in- dynamics of our model, are different from those of the DP
tensive research and a number of variants of this model werand are clearly nonuniversal. This nonuniversality is most
proposed, which cure some of its deficienci8$ For ex- likely related to the fact that our model has infinitely many
ample, the BS model as defined above is driven by the saabsorbing states, since similar behavior was observed for
called extremal dynamics, i.e., at a given time it is only asome other models with this propefi9,10]. Moreover, nu-
species with the smallest, which mutates and all the others merical evidence for up to now examined models with infi-
(except its neighbojsremain unchanged. This assumption, nitely many absorbing states suggests that although these
which is crucial for the scale-invariant properties of theexponents are indeed nonuniversand depend on the
model, seems to be rather unrealistic. One can mention, hovehoice of the absorbing statetheir sum is universaland
ever, that an interesting model of biological evolution, whichindependent on the absorbing sjgt@]. We will show that
is not driven by such a dynamics and still exhibits a robusiour model provides additional support to this observation.
critical behavior, was proposed by Chetial. [4]. An inter- Models with absorbing states and nonequilibrium phase
esting aspect of the BS model concerns a possible universaransitions are currently intensively studied. It is believed
ity class of its critical behavior. Although earlier simulations that models, which have a single absorbing state, belong to
suggested that the one-dimensional version of this modehe DP universality clas§l2] and this conjecture is sup-
might belong to the directed-percolatid®P) universality ported by a number of examples ranging from the Reggeon
class[5], more extensive calculations seem to exclude thidield theory[13] to contact processgd4] or to Schlgl's
possibility [6]. Nevertheless, the relation with the directed models[15]. There is also convincing numerical evidence
percolation is still intriguing, since one can construct certainthat a group of models with double absorbing state consti-
variants of the BS model, which are exactly equivalent to theutes another universality class, characterized by a different
directed percolatiof7]. set of critical exponentE8]. Although little is known about

In the present paper we propose a certain model of biofurther classification of models with finitely many absorbing
logical evolution in which fitness of a given species is deterstates, some knowledge is already accumulated about models
mined by its interactions with surrounding species. In ourwith infinitely many absorbing stat¢8,10,16. Such models
opinion, this is not an unrealistic assumption: putting into orare mainly used to describe some oxidation processes. As far
removing from a certain niche another species is likely toas steady-state properties are concerned, it is conjectured that
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FIG. 1. The density of active sitgs as a function ofr for L FIG. 3. The log-log plot oP(t) as a function of for r,=0 and
=10" (crossepandL = 10° (diamonds. Simulation time in the vi-  r=0.44, 0.4405, 0.441, 0.4415, and 0.44®m top to the bottorn
cinity of the transition was typically f0of Monte Carlo steps
(single update/sije which are already described in the literat(i8¢10,164, have

discrete site variables and thus for finite lattices the degen-
these models belong to directed percolation universality clasgracy of the absorbing state is also finjabeit rapidly in-

[17] but, as we have already mentioned, some of their dycreasing with system sizeSince our model has continuous
namical properties are universal only in a weaker sense. Site variables, the degeneracy of the absorbing state is infi-
Our model is defined on ddimensional Cartesian lattice. hite even for finite lattices. It is well known, especially in
Each site of the lattice represents a certain species. Mor@quilibrium statistical mechanics, that models with continu-
over, between each pair of neighboring spediesidj we  ous variables often have very different behavior than their
introduce an “interaction”w; ; (0<w;;<1), which de- discrete counterparts and it would be desirable to examine

scribes an amount of frustration which the spediesxdj  whether this feature is of any relevance in our model.
experience due to their close coexistence. Usually, initial in- To examine the properties of the one-dimensional version
teractionsw; ; are chosen randomly. Introducing certain of this model, we used Monte Carlo simulations. First, we
threshold parametar (0<r<2d), we define dynamics of studied the densitp of active sitegi.e., those withw>r) in

our model as follows{(i) Choose a sité at random.(ii)  the steady state for the system size 10* andL= 10> and
Calculatew=ZX;w; ;, where summation is over all nearest With initial interactions chosen randomly. The results, shown
neighborg. (iii) If @>r, then the chosen species, due to tooin Fig. 1, clearly indicate the existence of the phase transition
much frustration, becomes extinct and the site becomes od? the present model around~0.44, which separates the
cupied by a new species with the interactioms; chosen  active (p>0) and the absorbingp(=0) phases. Assuming
anew. If w<r, the species at the sitesurvives. that in the vicinity of the transitiopp has a power-law sin-

Before describing our numerical results, let us notice thagularity p~(r.—r)# and using the least-squares method, we
it is possible to havey, ; set in such a way that at each site estimatedr;=0.4409 and$=0.273. These estimates are
w<r, which means that the model comes to rest. Such &ased on results fdr=10> which, in our opinion, is suffi-
state is called an absorbing state and in our model this stagiently large to overcome the finite-size effects. The log-log
has obviously infinite(continuou$ degeneracy. Let us also plot of our data around the critical point is shown in Fig. 2.
notice that models with infinitely many absorbing states,
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FIG. 2. The log-log plot op(r) as a function of .—r. The data
are obtained for the system site=10°. The straight line has a FIG. 4. The log-log plot oN(t) as a function of for r=0 and
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FIG. 5. The log-log plot ofP(t) as a function oft for r FIG. 6. The log-log plot ofN(t) as a function oft for r
=0.441 andr,=0.2, 0.1, and 0.@from top to the bottorn =0.441 andr,=0.2, 0.1, and 0.@from top to the bottorn

ciently large to ensure that during the run the *“growing”

The value of the exponeng is close to the value in the cluster of active sites never wraps around the lattice. In Figs.
directed percolatiorBpp=0.2765[11]. Since the transition 3 and 4 we present the results fgr=0. One can see that the
in our model is between the active and absorbing phases, weest linearity is obtained far=0.441, which is in agreement
believe that as far as the steady-state properties are cowith the steady-state estimation Kf. Estimating the slope
cerned our model belongs to the DP universality class. of the data for =0.441, we obtains=0.259 and»=0.215.

To examine time-dependent properties of our model, weThese values are clearly different from the DP val[23],
used the so-called dynamic Monte Carlo metd®,19, dpp=0.159 andypp=0.313. However, the suri+ 7 is re-
which is a frequently used technique for studying modelsmarkably close to the corresponding DP valiyg+ 7pp .
with absorbing states. Following the general prescription of We performed similar calculations for other valuesrgf
this method, we prepared the initial configuration, whichand the results are basically the sama:=ad.441 the power-
consists of a single active site arld—1 inactive sites. law fit seems to be the best and the exponehtand %
Thus we assignw, ,=w,3=0.23 and w; ;,,=rq for i change continuously withy but their sum remains nearly
=3,4,... L and 2(<r.. With such an assignment and for constant and is equal téyp+ 7pp=0.473. The results for
r close tor; only the site withi=2 is active. Since the r=0.441 andr,=0,0.1,0.2 are shown in Figs. 5 and 6. For
periodic boundary conditions are imposed in our simulationsy ;=0.1 and 0.2 we obtained that the suim » equals 0.474
the system is translationally invariant and the initial locationand 0.482, respectively. These results confirm the earlier ob-
of the active site is obviously irrelevant. The model subseservations that for models with infinitely many absorbing
quently evolves according to its dynamical rules. We meastates exponent$and » are nonuniversal with respect to the
sured the probability of survivalP(t) until time t and the  choice of the absorbing state, but their sum is universal.
average number of active sitéft) at timet. One expects Although dynamical variables in our model are continu-
[18] that asymptotic behavior of these quantities stronglyous, in some respects the model seems to be simpler. Let us
depends on whether the system is at or off its critical pointnotice that one can easily generate any of the absorbing
In particular, at the critical point, one should haft) states with the macroscopically preassigned characteristics.
~t~% and N(t)~t7. Off-critical asymptotic behavior of In the present paper we investigated homogeneous absorbing
P(t) andN(t) deviates from the above power laws and thusstates with a constant value igf. Obviously, one can easily
enables precise location of the critical point. generate nonhomogeneous absorbing states and thus exam-

The time dependence d?(t) and N(t) in the log-log ine the role of such nonhomogeneities. Let us notice that
scale is shown in Figs. 3—6. Our statistics is based on runs upe generation of absorbing states for some other models
to t=2x10* [Monte Carlo steps per siteand we usually is a highly nontrivial and computationally demanding task
made 2 10* independent runs. As usual in this type of cal-[10].
culation, it is more efficient to keep records of active sites We hope that the present model being biologically moti-
since only they are updated in the course of simulationsvated, at the same time will provide additional insights into
Moreover, one has to choose the size of the sydtesnffi-  the physics of models with nonequilibrium phase transitions.
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