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Model of biological evolution with threshold dynamics and infinitely many absorbing states
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We study a model of biological evolution where the survival of a given species depends on its interactions
with neighboring species. In the steady state the model has an active phase and an absorbing phase, which are
separated by the critical point of the directed percolation universality class. The absorbing phase is infinitely
degenerate and the dynamical behavior of our model is found to be nonuniversal.@S1063-651X~99!12908-8#

PACS number~s!: 05.90.1m, 87.23.2n
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Biological systems, which consist of many interacting e
tities like cells, individuals, or species, are certainly with
the scope of statistical mechanics. One of the modern to
in this field is the modeling of biological evolution. To
large extent this interest is inspired by the so-called B
Sneppen~BS! model, which relates the apparent scale inva
ance of the extinction of species with the widely applica
concept of the self-organized criticality@1#. The BS model
provides a coarse-grained description of an ecosystem
this lattice model each speciesi is described by its fitnessf i ,
which is a real number (0, f i,1). In each time step the
species with the smallestf i becomes extinct and is replace
by a new species with the fitness chosen randomly. Mo
over, as inspired by biological observation, the nearest s
cies are also affected and their fitness is also chosen a
randomly. A remarkable prediction of the BS model is th
without tuning any parameters the model spontaneou
evolves toward the critical state, where arbitrary-size a
lanches of extinctions are observed, which is in agreem
with some fossil records@2#. The BS model inspired an in
tensive research and a number of variants of this model w
proposed, which cure some of its deficiencies@3#. For ex-
ample, the BS model as defined above is driven by the
called extremal dynamics, i.e., at a given time it is only
species with the smallestf i , which mutates and all the other
~except its neighbors! remain unchanged. This assumptio
which is crucial for the scale-invariant properties of t
model, seems to be rather unrealistic. One can mention, h
ever, that an interesting model of biological evolution, whi
is not driven by such a dynamics and still exhibits a rob
critical behavior, was proposed by Choiet al. @4#. An inter-
esting aspect of the BS model concerns a possible unive
ity class of its critical behavior. Although earlier simulation
suggested that the one-dimensional version of this mo
might belong to the directed-percolation~DP! universality
class@5#, more extensive calculations seem to exclude t
possibility @6#. Nevertheless, the relation with the direct
percolation is still intriguing, since one can construct cert
variants of the BS model, which are exactly equivalent to
directed percolation@7#.

In the present paper we propose a certain model of
logical evolution in which fitness of a given species is det
mined by its interactions with surrounding species. In o
opinion, this is not an unrealistic assumption: putting into
removing from a certain niche another species is likely
PRE 601063-651X/99/60~2!/1516~4!/$15.00
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affect, at least some, species that already existed in
niche. Our model is not driven by the external dynami
active species are those with fitnesses below certain thr
old parameterr, which might be regarded as some kind
ecological pressure. It turns out that depending on the va
of r the model is either in the active phase with const
extinction and replacement of species taking place or in
absorbing phase where the evolutional struggle comes to
and species no longer extinct. Although our model can
describe a long-time aspect of evolution in real ecosyste
we hope that it might describe them at least in a restric
sense. The model shows that a small change of externa
rameters~r! might induce a transition in an ecosystem b
tween the stasis and the active phase.

Our model has also an interesting critical behavior. Mo
Carlo simulations for this model show that as far as
steady-state properties are concerned, the model underg
phase transition of the DP universality class. However, c
tain exponents, namely,h andd ~defined below! describing
dynamics of our model, are different from those of the D
and are clearly nonuniversal. This nonuniversality is m
likely related to the fact that our model has infinitely ma
absorbing states, since similar behavior was observed
some other models with this property@9,10#. Moreover, nu-
merical evidence for up to now examined models with in
nitely many absorbing states suggests that although th
exponents are indeed nonuniversal~and depend on the
choice of the absorbing state!, their sum is universal~and
independent on the absorbing state! @9#. We will show that
our model provides additional support to this observation

Models with absorbing states and nonequilibrium pha
transitions are currently intensively studied. It is believ
that models, which have a single absorbing state, belon
the DP universality class@12# and this conjecture is sup
ported by a number of examples ranging from the Regg
field theory @13# to contact processes@14# or to Schlögl’s
models @15#. There is also convincing numerical eviden
that a group of models with double absorbing state con
tutes another universality class, characterized by a diffe
set of critical exponents@8#. Although little is known about
further classification of models with finitely many absorbin
states, some knowledge is already accumulated about mo
with infinitely many absorbing states@9,10,16#. Such models
are mainly used to describe some oxidation processes. A
as steady-state properties are concerned, it is conjectured
1516 © 1999 The American Physical Society
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these models belong to directed percolation universality c
@17# but, as we have already mentioned, some of their
namical properties are universal only in a weaker sense.

Our model is defined on ad-dimensional Cartesian lattice
Each site of the lattice represents a certain species. M
over, between each pair of neighboring speciesi and j we
introduce an ‘‘interaction’’ wi , j (0,wi , j,1), which de-
scribes an amount of frustration which the speciesi and j
experience due to their close coexistence. Usually, initial
teractions v i , j are chosen randomly. Introducing certa
threshold parameterr (0,r ,2d), we define dynamics o
our model as follows:~i! Choose a sitei at random.~ii !
Calculatev5( jwi , j , where summation is over all neare
neighborsj. ~iii ! If v.r , then the chosen species, due to t
much frustration, becomes extinct and the site becomes
cupied by a new species with the interactionswi , j chosen
anew. Ifv,r , the species at the sitei survives.

Before describing our numerical results, let us notice t
it is possible to havewi , j set in such a way that at each si
v,r , which means that the model comes to rest. Suc
state is called an absorbing state and in our model this s
has obviously infinite~continuous! degeneracy. Let us als
notice that models with infinitely many absorbing stat

FIG. 1. The density of active sitesp as a function ofr for L
5104 ~crosses! andL5105 ~diamonds!. Simulation time in the vi-
cinity of the transition was typically 104 of Monte Carlo steps
~single update/site!.

FIG. 2. The log-log plot ofp(r ) as a function ofr c2r . The data
are obtained for the system sizeL5105. The straight line has a
slopeb50.273.
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which are already described in the literature@9,10,16#, have
discrete site variables and thus for finite lattices the deg
eracy of the absorbing state is also finite~albeit rapidly in-
creasing with system size!. Since our model has continuou
site variables, the degeneracy of the absorbing state is
nite even for finite lattices. It is well known, especially
equilibrium statistical mechanics, that models with contin
ous variables often have very different behavior than th
discrete counterparts and it would be desirable to exam
whether this feature is of any relevance in our model.

To examine the properties of the one-dimensional vers
of this model, we used Monte Carlo simulations. First, w
studied the densityp of active sites~i.e., those withv.r ! in
the steady state for the system sizeL5104 andL5105 and
with initial interactions chosen randomly. The results, sho
in Fig. 1, clearly indicate the existence of the phase transi
in the present model aroundr;0.44, which separates th
active (p.0) and the absorbing (p50) phases. Assuming
that in the vicinity of the transitionp has a power-law sin-
gularity p;(r c2r )b and using the least-squares method,
estimatedr c50.4409 andb50.273. These estimates a
based on results forL5105 which, in our opinion, is suffi-
ciently large to overcome the finite-size effects. The log-l
plot of our data around the critical point is shown in Fig.

FIG. 3. The log-log plot ofP(t) as a function oft for r 050 and
r 50.44, 0.4405, 0.441, 0.4415, and 0.442~from top to the bottom!.

FIG. 4. The log-log plot ofN(t) as a function oft for r 050 and
r 50.44, 0.4405, 0.441, and 0.4415~from top to the bottom!.
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The value of the exponentb is close to the value in the
directed percolationbDP50.2765@11#. Since the transition
in our model is between the active and absorbing phases
believe that as far as the steady-state properties are
cerned our model belongs to the DP universality class.

To examine time-dependent properties of our model,
used the so-called dynamic Monte Carlo method@18,19#,
which is a frequently used technique for studying mod
with absorbing states. Following the general prescription
this method, we prepared the initial configuration, whi
consists of a single active site andL21 inactive sites.
Thus we assignw1,25w2,350.23 and wi ,i 115r 0 for i
53,4, . . . ,L and 2r 0,r c . With such an assignment and fo
r close to r c only the site with i 52 is active. Since the
periodic boundary conditions are imposed in our simulatio
the system is translationally invariant and the initial locati
of the active site is obviously irrelevant. The model sub
quently evolves according to its dynamical rules. We m
sured the probability of survivalP(t) until time t and the
average number of active sitesN(t) at time t. One expects
@18# that asymptotic behavior of these quantities stron
depends on whether the system is at or off its critical po
In particular, at the critical point, one should haveP(t)
;t2d and N(t);th. Off-critical asymptotic behavior of
P(t) andN(t) deviates from the above power laws and th
enables precise location of the critical point.

The time dependence ofP(t) and N(t) in the log-log
scale is shown in Figs. 3–6. Our statistics is based on run
to t523104 @Monte Carlo steps per site# and we usually
made 23104 independent runs. As usual in this type of ca
culation, it is more efficient to keep records of active si
since only they are updated in the course of simulatio
Moreover, one has to choose the size of the systemL suffi-

FIG. 5. The log-log plot ofP(t) as a function oft for r
50.441 andr 050.2, 0.1, and 0.0~from top to the bottom!.
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ciently large to ensure that during the run the ‘‘growing
cluster of active sites never wraps around the lattice. In F
3 and 4 we present the results forr 050. One can see that th
best linearity is obtained forr 50.441, which is in agreemen
with the steady-state estimation ofr c . Estimating the slope
of the data forr 50.441, we obtaind50.259 andh50.215.
These values are clearly different from the DP values@20#,
dDP50.159 andhDP50.313. However, the sumd1h is re-
markably close to the corresponding DP valuedDP1hDP .

We performed similar calculations for other values ofr 0
and the results are basically the same: atr 50.441 the power-
law fit seems to be the best and the exponentsd and h
change continuously withr 0 but their sum remains nearl
constant and is equal todDP1hDP50.473. The results for
r 50.441 andr 050,0.1,0.2 are shown in Figs. 5 and 6. F
r 050.1 and 0.2 we obtained that the sumd1h equals 0.474
and 0.482, respectively. These results confirm the earlier
servations that for models with infinitely many absorbi
states exponentsd andh are nonuniversal with respect to th
choice of the absorbing state, but their sum is universal.

Although dynamical variables in our model are contin
ous, in some respects the model seems to be simpler. Le
notice that one can easily generate any of the absorb
states with the macroscopically preassigned characteris
In the present paper we investigated homogeneous abso
states with a constant value ofr 0 . Obviously, one can easily
generate nonhomogeneous absorbing states and thus e
ine the role of such nonhomogeneities. Let us notice t
the generation of absorbing states for some other mo
is a highly nontrivial and computationally demanding ta
@10#.

We hope that the present model being biologically mo
vated, at the same time will provide additional insights in
the physics of models with nonequilibrium phase transitio

FIG. 6. The log-log plot ofN(t) as a function oft for r
50.441 andr 050.2, 0.1, and 0.0~from top to the bottom!.
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